数学月間に寄せて	竹内 淳実
讀費馬最終定理	フェルマー最終定理を読む
費馬珠遺設問箋	^{フェルマー しゅい せつもん せん} 費馬の珠遺 設問の箋
提題簡潔且深淵	
智窮枝茂累乗式	ちきわ えだしげ るいじょう しき 智窮めれば 枝茂る 累乗の式
精察人移幾積年	tilito ひとうつ いくせきねん 精察 人移こと 幾積年ぞ
直角三邊古傳法	
橢円對稱豫言賢	^{だえん たいしょう よげん けん} 楕円の対称 予言の賢あり
神童現出無知倦	神童現われ出で 倦むを知る無し
終得證明完璧篇	シリュネ しょうめリ かんべき へん 終に得たり証明 完璧の篇

昨年 「谷山豊さんを偲んで」上野正さんの講演がありました。これに啓発されてサイ モン・シンの「フェルマーの最終定理」を読み返し、詩に纏めてみました。フェルマーの 定理はピタゴラスの定理に似ています。しばらく中学生の頃の思考に立ち返ってみました。 ピタゴラス三つ組数が無限に存在することのユークリッドの証明は[整数を順に二乗して 行くと、隣り合う二つの平方数の差は、必ず奇数になる・・・] $3^2 + 4^2 = 5^2$ 、 $5^2 + 1$ $2^2 = 13^2$ 、 $7^2 + 24^2 = 25^2 \cdot \cdot \cdot \cdot でした。無限であることの証明はこれでよい$ $のですが、すべてのピタゴラス数を拾い出してはいません。<math>15^2 + 112^2 = 113^2$ の 他に $15^2 + 8^2 = 17^2$ もありますから。

現在この問題は $A^2 = C^2 - B^2 = (C - B)(C + B)$ の式を用いて、 例えば 105=3×5×7から 105²+5512²=5513²、105²+88²=137²、 105²+208²=233²、105²+608²=617² Aはすべての奇数で、BCの 整数解があります。

では偶数を軸に考えるとどうなるか。 91²+60²=109²、11²+60²=61²、2 21²+60²=229²、899²+60²=901² 偶数 B では、2²以上を含む偶数に限ら れます。

このようにして、たとえば、A²+B²=C²の整数解がある時、C²+B²=D²である整数 D は存在するか?このように考えると、童心にかえってよい頭の体操になります。